metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ray J. Butcher,^a* Nicole Muratore^b and Andrew P. Purdy^b

^aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ^bChemistry Division, Code 6120, Naval Research Laboratory, Washington, DC 20375-5342, USA

Correspondence e-mail: raymond.butcher@nrl.navy.mil

Key indicators

Single-crystal X-ray study T = 93 K Mean σ (C–C) = 0.002 Å R factor = 0.022 wR factor = 0.057 Data-to-parameter ratio = 23.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. mer-Bis(diethylenetriamine)zinc(II) dichloride

At 93 K, in the title compound, $[Zn(C_4H_{13}N_3)_2]Cl_2$, the Zn^{II} atom is coordinated by six N atoms from two diethylenetriamine ligands in a distorted octahedral geometry. In contrast to the previously determined chloride and bromide monohydrates, this compound is anhydrous. There is extensive hydrogen bonding between the amine H atoms in the cation and the chloride anions. Received 2 May 2006 Accepted 25 May 2006

Comment

The structures of several bis(diethylenetriamine)zinc(II) cations have previously been determined (Hodgson, & Penfold, 1974; Liu et al., 2005; Murphy et al., 1980; Zocchi et al., 1972; Johns & Abdul Malik, 2002; Razak et al., 2000). In all cases there is extensive hydrogen bonding between the amine H atoms and the anions and solvent molecules (where appropriate), which has noticeable effects on the metrical parameters of the ZnN₆ chromophore. The structures of both [Zn(dien)₂]Cl₂·H₂O (Liu et al., 2005) and [Zn(dien)₂]Br₂·H₂O (Hodgson & Penfold, 1974) are the most relevant to the title compound, Zn(dien)₂]Cl₂, (I), which, however, was synthesized under anhydrous conditions. Thus in (I) all the hydrogen-bonding interactions are between the amine H atoms and the chloride anions (see Table 2). A comparison between the metrical parameters of the three compounds reveals differences that show up most clearly in distortions in the N-Zn-N angles. Thus the *trans* chelate bite angles for N1A - Zn - N3A and N1B - Zn - N3B [157.55 (5) and $156.61(5)^{\circ}$, respectively] are the smallest among those observed, while N2A - Zn - N2B is only 170.36 (5)°. While the usual pattern of longer $Zn\!-\!N_{\text{primary}}$ and shorter $Zn\!-\!$ N_{secondary} distances is observed, there are also some minor distortions in the Zn-N distances.

As indicated above, there is extensive hydrogen bonding between the amine H atoms and chloride anions. The two anions, Cl1 and Cl2, make four and six acceptor hydrogen bonds, respectively, to the amine H atoms, with $N \cdots Cl$ distances ranging from 3.2865 (13) to 3.4468 (13) Å.

© 2006 International Union of Crystallography All rights reserved

Figure 1

View of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms are represented by circles of arbitrary size.

Figure 2

The molecular packing of (I), viewed down the c axis, with hydrogen bonds drawn as dashed lines.

Experimental

 $ZnCl_2$ (0.0704 g), Se (0.0218 g), AuCl_3 (0.0316 g) and anhydrous diethylenetriamine (0.4 ml) were loaded into a 5 mm OD/3 mm ID quartz tube. This tube was cooled to 77 K and flame-sealed under vacuum at a length of 11.6 cm (57% fill). The tube was heated in a 418 K oil bath for 12 d, which resulted in a large number of clear, colorless crystals and Au flakes in the top half of the tube, and a clump of Au metal at the bottom. The crystals were washed with dry diethylenetriamine and diethyl ether in a drybox and immersed in Cargille #2 oil.

Crystal data

$[Zn(C_4H_{13}N_3)_2]Cl_2$
$M_r = 342.62$
Monoclinic, $P2_1/c$
a = 11.2492 (9) Å
b = 10.8810 (9) Å
c = 12.4813 (10) Å
$\beta = 93.218 \ (1)^{\circ}$
V = 1525.3 (2) Å ³

Data collection

Bruker SMART 1K CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.746, T_{max} = 1.000$ (expected range = 0.377–0.505)

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.057$ S = 1.053697 reflections 155 parameters H-atom parameters constrained Z = 4 $D_x = 1.492 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 1.95 \text{ mm}^{-1}$ T = 93 (2) KIrregular fragment, colorless 0.68 × 0.55 × 0.35 mm

11570 measured reflections 3697 independent reflections 3416 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$ $\theta_{\text{max}} = 28.3^{\circ}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0265P)^{2} + 0.733P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.45 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.0022 (5)

Table 1

Selected geometric parameters (Å, °).

Zn-N2A	2.1332 (12)	N2A - C2A	1.4663 (19)
Zn-N2B	2.1566 (12)	N2A - C3A	1.4749 (18)
Zn-N1B	2.1943 (12)	N3A - C4A	1.4766 (18)
Zn-N3A	2.2356 (12)	N1B-C1B	1.478 (2)
Zn-N1A	2.2448 (12)	N2B - C2B	1.4673 (18)
Zn-N3B	2.2462 (12)	N2B-C3B	1.4694 (18)
N1A - C1A	1.477 (2)	N3B-C4B	1.4749 (18)
N2A - Zn - N2B	170.36 (5)	N1B-Zn-N1A	88.62 (4)
N2A - Zn - N1B	107.23 (5)	N3A - Zn - N1A	157.55 (5)
N2B-Zn-N1B	81.02 (5)	N2A - Zn - N3B	94.56 (4)
N2A-Zn-N3A	79.09 (4)	N2B-Zn-N3B	78.15 (4)
N2B-Zn-N3A	96.37 (5)	N1B - Zn - N3B	156.61 (5)
N1B-Zn-N3A	89.05 (4)	N3A - Zn - N3B	103.67 (5)
N2A-Zn-N1A	80.30 (5)	N1A - Zn - N3B	86.72 (4)
N2B-Zn-N1A	105.30 (5)		

Table 2		
Hydrogen-bond	geometry	(Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H1AC \cdots Cl2^{i}$	0.92	2.47	3.3410 (12)	158
$N1A - H1AD \cdots Cl1^{ii}$	0.92	2.39	3.3035 (12)	172
$N2A - H2AC \cdot \cdot \cdot Cl2$	0.93	2.36	3.2876 (12)	174
$N3A - H3AC \cdots Cl1$	0.92	2.63	3.4468 (13)	148
$N3A - H3AD \cdot \cdot \cdot Cl2^{iii}$	0.92	2.50	3.3480 (13)	153
$N1B - H1BC \cdot \cdot \cdot Cl1$	0.92	2.39	3.2865 (13)	164
$N1B - H1BD \cdots Cl1^{ii}$	0.92	2.44	3.3535 (13)	174
$N2B - H2BC \cdot \cdot \cdot Cl2^{iii}$	0.93	2.49	3.3635 (13)	156
$N3B - H3BC \cdot \cdot \cdot Cl2^{i}$	0.92	2.61	3.4432 (13)	151
$N3B-H3BD\cdots$ Cl2	0.92	2.63	3.2919 (13)	130

Symmetry codes: (i) -x + 2, -y, -z; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

All H atoms were initially located in a difference Fourier map. The positions of the amine H atoms were idealized at 0.92 Å (NH₂) or 0.93 Å (NH), with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm N})$. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H distances in of 0.99 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$.

metal-organic papers

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT-Plus* (Bruker, 1999); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

We thank the ONR for financial support.

References

Bruker (1998). SMART (Version 5.631). Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1999). SAINT-Plus (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
- Hodgson, P. G. & Penfold, B. R. (1974). J. Chem. Soc. Dalton Trans. pp. 1870– 1872.
- Johns, C. A. & Abdul Malik, K. M. (2002). Polyhedron, 21, 395-401.
- Liu, B., Huo, F.-J., Jiang, X.-M. & Yang, B.-S. (2005). Acta Cryst. E61, m598m600.
- Murphy, A., Mullane, J. & Hathaway, B. (1980). Inorg. Nucl. Chem. Lett. 16, 129–134.
- Razak, I. A., Shanmuga Sundara Raj, S., Fun, H.-K., Tong, Y.-X., Lu, Z.-L. & Kang, B.-S. (2000). Acta Cryst. C56, 291–292.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Zocchi, M., Albinati, A. & Tieghi, G. (1972). Cryst. Struct. Commun. 1, 135–138.